

Integrated Water Resources Management

– Model Region Mongolia –

MoMo Fact Sheet iPiT® - integrated Personal innovative Toilet

SPONSORED BY THE

Authors:

Dipl.-Ing. Jürgen Stäudel Bauhaus-Universität Weimar

B.Sc. René Seyfarth Bauhaus-Universität Weimar

Prof. Dr. Jörg Londong Bauhaus-Universität Weimar

Editors:

Prof. Dr. Dietrich Borchardt Michael Schäffer Dr. Daniel Karthe Helmholtz Centre for Environmental Research

Background

2.6 billion people on this planet do not have access to a proper toilet. Each day hundreds of children are dying underage due to fecal-oral-transmitted diseases.

Many experts work on adapted solutions for the world-wide sanitary crisis, but a real breakthrough is not in sight.

The main objectives which still need to be considered are:

- development of standardized technical components
- better availability of adapted technology
- integration into an overall sanitation system
- · economical sustainability
- stakeholder involvement

Under the guidance of Prof. Dr. Londong, the Bauhaus-Universität Weimar developed an innovative toilet, called the iPiT®.

The iPiT team tries to contribute to find solutions for the worldwide sanitary crisis by addressing the main objectives in their pilot project in Darkhan within the frame of the MoMo project.

iPiT development

The iPiT is a key component of an integrated sanitation system. Therefore it is specifically designed to match the specific needs of the overall system. The toilet and the containers have to function as a unit. Urine and feces are separately collected in 2 different containers. Replaceable, stackable and easily transportable containers are crucial components of the toilet.

Through separate collection of urine and feces it is possible to apply the most suitable way of treatment (biogas digester and composting) and value added reuse of nutrient-rich fertiliser in agriculture. The production of energy and fertiliser shall contribute to the economic sustainability of the system.

Fig. 1: Transport of new iPiTs.

Fig. 2: Emptying of an iPiT.

Another very important criteria in the development process of the iPiT® is the enhancement of the user comfort. The toilet should as well be safer and easier to use for children and elderly people. Most of the old latrines have wooden boards over the cesspit and in wintertime (with temperatures down to minus 40°C) these are very dangerous to use. Additionally the old latrines are very unhygienic, contaminate the soil and the groundwater and are therefore the main reason for the spread of faecal-oral transmitted diseases.

Fig. 3 (left): An old latrine. There is not exist any user comfort an in wintertime the ground is frozen.

Fig. 4 (right): The new iPiT with an toilet seat. The comfort is much better and the toilet is much safer than the old latrine.

iPiT as a part of the integrated sanitation system

The iPiT is one main component of the integrated sanitation system with following research objectives:

- development of the iPiT as part of the integrated sanitation system, which is suitable for a large scale implementation in Mongolia
- emerge business opportunities for local services which include iPiT production, collection, transport and treatment of the organic matter
- identification of the potential for optimization in terms of acceptance, comfort and maintenance of the toilet technology
- identification of the potential for optimization of the integrated sanitation system in terms of material flows, energy flows and cash flows

Integration of the toilet user

From the beginning of the project the families, which use the toilets and other stakeholders were integrated in the whole planning process. Capacity development for all stakeholders is essential for the acceptance of the new toilet system.

Fig. 5: Information sheets "Toilet Use" in different languages.

Preliminary results

- children stop open defecation and start to use the new toilets
- improvement of hygiene toilet user keep their toilets clean
- high demand for the iPiT® among neighbours and guests
- high level of acceptance
- demand for fertiliser made from urine and feces is increasing significantly

Key Data

Location: Darkhan, Mongolia

Latitude: 49°30'31" N, Longitude: 105°55'34,5" E

Developer: Bauhaus-Universität Weimar

Type of pilot

measure: Urine diversion dry toilet and service company for operation

Size of the pilot

project: At 12 families the iPiT® is currently used and optimised

Project Partners & Contact Information

Bauhaus-Universität Weimar

Dipl.-Ing. Jürgen Stäudel

Chair of Urban Water Management and Sanitation

e-Mail: juergen.staeudel@uni-weimar.de

Internet: www.ipit.eu